L’AI generativa aumenta l’efficienza produttiva nel manifatturiero
Nella produzione, anche piccoli errori possono portare al blocco della linea, in uno scenario da incubo che l’AI generativa promette di rendere sempre meno frequente. Stefan Bergstein, Chief Architect Manufacturing di Red Hat, illustra le nuove opportunità e i requisiti per implementare con successo questa tecnologia rivoluzionaria.
L’AI non è una novità nel settore manifatturiero. Ottimizzazione dei processi e controllo qualità si avvalgono già dell’AI predittiva, così come la manutenzione predittiva basata su AI è diventata la norma in molte aziende, consentendo di effettuare interventi di manutenzione in maniera proattiva grazie all’analisi dei dati delle macchine. Tuttavia, finora l’applicazione dell’AI è spesso stata limitata alle singole macchine, senza considerare lo stato complessivo della linea di produzione o la comunicazione tra sistemi diversi, con un approccio frammentato che non permette di sfruttarne appieno il potenziale. Il panorama è destinato a cambiare grazie all’avvento dell’AI generativa, che promette di rendere la produzione industriale sempre più efficiente.
Il potenziale dell’AI generativa si sta manifestando proprio nell’interazione uomo-macchina. L’obiettivo non è sostituire l’operatore, ma affiancarlo con suggerimenti generati dall’AI per affrontare le sfide tecniche e aumentare la produttività complessiva. Tuttavia, per l’implementazione dell’AI in ambito produttivo è fondamentale non affidarsi esclusivamente ai LLM (Large Language Models): nonostante vengano addestrati su enormi quantità di dati, i LLM possono infatti basarsi su informazioni obsolete. La soluzione risiede nella tecnica RAG (Retrieval-Augmented Generation), che arricchisce i LLM con dati provenienti da fonti aggiuntive, come informazioni in tempo reale, dati proprietari e parametri specifici delle macchine aziendali.
Applicare l’AI generativa all’intera linea di produzione rappresenta un primo passo fondamentale verso una maggiore efficienza del settore manifatturiero. Altrettanto cruciale è l’utilizzo degli agenti AI. Pur non essendo un concetto nuovo di per sé, i progressi in ambito AI ne consentono finalmente l’implementazione pratica per la creazione di sistemi autonomi. Un agente AI può analizzare le problematiche attingendo a dati provenienti da diverse fonti – LLM, database vettoriali, knowledgebase o Internet – per trarre conclusioni e prendere decisioni. Queste informazioni possono essere fornite all’operatore o utilizzate per apportare modifiche in autonomia, aprendo la strada a molteplici casi d’uso automatizzati, come il rilevamento e la risoluzione degli errori.
Nell’implementare l’AI, la strada del cloud pubblico è spesso la scelta iniziale per i data scientist perché consente di effettuare addestramento, controllo qualità e riaddestramento dei modelli in un unico ambiente. Tuttavia, le aziende manifatturiere si trovano poi di fronte a una domanda cruciale: come trasferire efficacemente i modelli addestrati in fabbrica, alle linee di produzione? La risposta risiede nell’edge computing. Per ottimizzare i processi produttivi è infatti necessario analizzare grandi quantità di dati in tempo reale, direttamente sulla linea di produzione, integrando l’IT con impianti e sistemi di controllo.
Nonostante i vantaggi innegabili dell’AI generativa, molti progetti in questo ambito sono ancora in fase pilota. Uno studio di McKinsey evidenzia come solo il 3% delle aziende abbia implementato applicazioni di AI generativa in produzione. Le ragioni di questa esitazione sono molteplici: dalla mancanza di competenze specifiche alla carenza di risorse, fino all’assenza di un’infrastruttura adeguata che faciliti e acceleri l’adozione dell’AI dallo sviluppo all’operatività.
Una piattaforma ibrida cloud aperta basata su container rappresenta la soluzione ideale per colmare questo gap infrastrutturale, in quanto offre una base solida e coerente per lo sviluppo, l’addestramento e l’integrazione dei modelli di AI, con la flessibilità di operare in ambienti privati, pubblici o edge. Non sorprende che sempre più aziende scelgano l’hybrid cloud per creare e gestire i propri ambienti AI. La migrazione verso piattaforme container è inarrestabile: anche i tradizionali MES (Manufacturing Execution Systems) si stanno spostando verso questa tecnologia, attratti dai numerosi vantaggi in termini di efficienza, rapidità di aggiornamento software e disponibilità.
In sostanza, l’adozione dell’AI generativa in ambito industriale è un’evoluzione inevitabile, almeno nel medio termine, anche solo per restare al passo con la concorrenza. Ma le applicazioni dell’AI in azienda non si limitano ai processi produttivi: anche la resilienza della supply chain può trarre beneficio da questa tecnologia, ad esempio ottimizzando la selezione dei fornitori e implementando agenti AI per una maggiore flessibilità. È proprio l’ampio spettro di applicazioni possibili che rende l’AI generativa il motore principale della futura trasformazione industriale.
Contenuti correlati
-
Osservatorio Mecspe, un terzo degli imprenditori è pronto a richiedere gli incentivi del Piano Transizione 5.0 entro fine anno
Quasi la metà degli imprenditori ha espresso un parere positivo sulle misure contenute nel Piano Transizione 5.0, e quasi un terzo delle aziende italiane del manifatturiero è già pronto ad avvalersi dei nuovi incentivi 5.0 entro fine...
-
Ingegneria in cloud e assistenti AI nella suite di progettazione B&R
Alla fiera SPS di quest’anno a Norimberga, in Germania, B&R ha annunciato un importante aggiornamento della sua suite completa di software di progettazione e runtime. Con Automation Studio Code, B&R introduce un’esperienza di progettazione completamente nuova. La...
-
I quattro trend nel futuro della supply chain secondo Remira Italia
Investire nella connettività digitale, spingere verso tracciabilità e trasparenza, trovare nuove strategie per rendere le supply chain più resilienti, garantire l’integrità e la coerenza dei dati: queste le quattro tendenze identificate da Remira Italia, azienda specializzata nell’offerta...
-
Rockwell Automation dà vita alle operazioni autonome utilizzando Nvidia Omniverse
Rockwell Automation ha annunciato l’integrazione delle interfacce di programmazione delle applicazioni (API) di Nvidia Omniverse nel proprio software Digital Twin Emulate3D per ottimizzare le operazioni di fabbrica tramite l’intelligenza artificiale e la tecnologia di simulazione fisica. I digital twin ottimizzano...
-
Mancano 5 milioni di esperti di cybersecurity – e adesso?
ISC2, la principale organizzazione non-profit al mondo per i professionisti della sicurezza informatica, ha stimato che quest’anno la carenza di professionisti della cybersecurity raggiungerà quota 4,8 milioni, segnando una crescita del 19% su base annua. Il gap...
-
Accordo tra PTC e Amazon Web Services nel CAD e PDM cloud-native
PTC ha annunciato un accordo di collaborazione strategica con Amazon Web Services (AWS) per accelerare la crescita di Onshape, la sua soluzione cloud-native CAD (Computer Aided Design) e PDM (Product Data Management). Gli obiettivi della partnership includono...
-
Intelligenza Artificiale, al via il bando ‘Io sono futuro’ rivolto alle start-up
Valorizzare il talento dei giovani startupper italiani, mettendolo al servizio di progetti innovativi che sfruttino l’intelligenza artificiale come strumento chiave per affrontare le emergenze globali. Questo l’obiettivo del nuovo bando della Fondazione Della Frera, promosso nell’ambito dell’edizione...
-
Big Data, big opportunity
Per sfruttare i massivi insiemi di dati provenienti da macchine e prodotti IoT, servono sistemi all’avanguardia che integrino automazione avanzata e intelligenza artificiale Correva l’anno 1892 quando, nell’Avventura dei Faggi Rossi, Arthur Conan Doyle faceva esclamare a...
-
AI e industria: un binomio vincente per competitività e crescita
L’industria guarda sempre più all’intelligenza artificiale per poter affrontare le sfide poste in essere dall’attuale scenario mondiale e migliorare efficienza, flessibilità, sostenibilità e competitività “L’intelligenza artificiale non si può fermare. Ma l’uomo può sfruttarla a suo favore”...
-
Advantech lancia il servizio di certificazione IEC 62443
Advantech lancia il servizio di certificazione IEC 62443, pensato per le esigenze di certificazione delle apparecchiature di edge computing in conformità alla norma IEC 62443 e agli standard correlati. Advantech offre una soluzione completa per aumentare la...