Come il deep learning può contribuire al rilevamento delle frodi
Machine Learning e Deep Learning. Secondo Cloudera possono giocare un ruolo importante nella lotta conto le frodi. Ecco perché
Una delle molte aree in cui l’apprendimento automatico (machine learning e deep learning) può fare la differenza in ambito enterprise è la capacità di fare previsioni accurate nel campo dell’individuazione delle frodi.
Identificare una transazione come fraudolenta è un requisito critico per le società di servizi finanziari, ma sapere che una transazione che è stata segnalata come fraudolenta da un sistema basato su regole è invece una transazione valida, può essere altrettanto importante. Oltre a esserci un costo associato a una transazione erroneamente segnalata come frode, questo può erodere la fiducia del cliente, preoccupato dal verificarsi di troppi falsi positivi sul suo conto.
Un approccio per risolvere questo problema è quello di aggiungere un modello automatico di machine learning a seguire il sistema basato su regole al fine di analizzare ulteriormente le transazioni segnalate come fraudolente, ed eliminare un maggior numero di falsi positivi. Un modello ben calibrato e accurato può prevedere quali sono i falsi positivi e ridurre i costi di follow-up, migliorando drasticamente la fiducia dei clienti.
Un approccio che si avvale del deep learning ha portato notevoli miglioramenti nelle prestazioni di molteplici campi e può essere applicato altrettanto bene all’individuazione delle frodi che presenta un grande squilibrio tra il numero di transazioni valide e quelle fraudolente, rendendo gli approcci tradizionali di machine learning supervisionato meno efficaci. Un’alternativa è quella di introdurre un approccio basato sul rilevamento delle anomalie: trovare il modello nelle transazioni valide e segnalare come potenzialmente fraudolente quelle che non vi rientrano.
Le anomalie, spesso indicate come outlier, sono dati puntuali o sequenze di dati che non si conformano a una nozione di comportamento normale. L’attività di anomaly detection quindi, consiste nel trovare quei modelli in dati che non aderiscono alle norme previste. La capacità di riconoscere o rilevare comportamenti anomali può fornire indicazioni molto utili in tutti i settori industriali. Segnalare o mettere in atto una risposta pianificata quando si verificano questi casi insoliti può far risparmiare alle aziende tempo, denaro e clienti.
Il rilevamento automatico e la corretta classificazione di qualcosa che non viene considerato anomalo è un problema impegnativo che è stato affrontato in molti modi diversi nel corso degli anni. Gli approcci tradizionali di machine learning si rivelano in realtà non ottimali quando si tratta di dati ad alta dimensione, perché non riescono a catturarne la complessa struttura. È qui che i metodi di deep learning possono rivelare il loro valore.
Il rapporto esamina una serie di importanti architetture di modelli di deep learning, tra cui gli autoencoder, gli autoencoder variazionali, le reti antagoniste generative e i metodi sequenza per sequenza, e analizza come possono essere applicati al compito di rilevamento delle anomalie, confrontandoli in termini di costi di formazione, inferenza e storage.
Fonte foto apertura: Pixabay_ahmedgad
Contenuti correlati
-
Accordo tra PTC e Amazon Web Services nel CAD e PDM cloud-native
PTC ha annunciato un accordo di collaborazione strategica con Amazon Web Services (AWS) per accelerare la crescita di Onshape, la sua soluzione cloud-native CAD (Computer Aided Design) e PDM (Product Data Management). Gli obiettivi della partnership includono...
-
Agricoltura verticale? Possibile con l’automazione
L’intero sistema dell’inglese IGS, che fornisce piattaforme in grado di creare climi ideali per piante e persone, è gestito da software e robot mobili Omron L’agricoltura verticale automatizzata si sta sviluppando rapidamente, tanto che il mercato globale...
-
Metaverso industriale, in crescita del 62% gli investimenti delle aziende
S&P Global Market Intelligence 451 Research e Siemens hanno pubblicato un rapporto sullo stato del metaverso industriale nel 2024. Lo studio si basa su un’indagine condotta su 907 partecipanti di 16 settori e sette Paesi (Australia, Canada,...
-
Supply chains: still vulnerable: V rapporto McKinsey sulle supply chain
La quinta edizione dell’ indagine annuale McKinsey ‘Global Supply Chain Leader Survey’ è stata condotta tra i dirigenti senior del settore delle forniture di diversi settori e aree geografiche. Il sondaggio, condotto tra aprile e giugno 2024, ha...
-
Prism AimmGen di Flir usa i dati sintetici per l’addestramento dell’AI
Teledyne Flir ha reso disponibile Prism AimmGen, l’ultima novità della famiglia di software Teledyne Flir Prism. Prism AimmGen è un servizio di generazione di modelli di intelligenza artificiale (AI) non soggetti alla regolamentazione ITAR che consente la...
-
Automazione e compliance alla normativa UE sugli imballaggi con Omron
L’Europa si sta preparando per apportare cambiamenti radicali alla legislazione sugli imballaggi. Patricia Torres, esperta di sostenibilità di Omron Industrial Automation Europe, spiega in che modo l’automazione della tracciabilità digitalizzata può aiutare i produttori di beni di...
-
Il 20% dei produttori utilizza la sicurezza di rete come prima linea di difesa contro gli attacchi informatici
Secondo un recente sondaggio condotto dalla società di ricerche ABI Research sullo stato della tecnologia nel settore manifatturiero, i produttori hanno individuato la sicurezza OT della rete come principale ambito di investimento per quanto concerne la sicurezza...
-
Tecnologie medicali innovative e telemedicina
Il processo di digitalizzazione spinge e incrementa l’innovazione tecnologica in campo biomedicale. Si fa strada un modello di “ospedale senza muri”, favorito dallo sviluppo di tecnologie abilitanti e dal diffondersi di strumenti e apparecchiature in grado di...
-
Ispezione a raggi X automatizzata Omron nella produzione di semiconduttori
Omron annuncia il lancio del VT-X950, il più recente modello della linea di sistemi di ispezione a raggi X automatici di tipo CT. Il VT-X950 si unisce ai modelli VT-X750-XL e VT-X850, andando ad ampliare la gamma...
-
AI, IoT e tomografia per rilevare i difetti nel progetto Reply e TEC Eurolab
Un software intelligente in grado di riconoscere in autonomia i difetti di un qualsiasi componente industriale. È questa l’idea alla base di 3DAIQ, un progetto di ricerca sperimentale cofinanziato nell’ambito del Bando IRISS promosso da SMACT Competence...