Additive Manufacturing per pinze di estrazione in SSI Schäfer
Immagazzinaggio, movimentazione e trasporto, prelievo degli ordini e altro ancora: SSI Schäfer è un’azienda specializzata nei sistemi modulari di stoccaggio e logistica e nel software associato. Per il processo di produzione dei contenitori per lo stoccaggio, il trasporto e il prelievo degli ordini, l’azienda era alla ricerca di un modo conveniente, affidabile e agevole per estrarre i contenitori dalle proprie macchine di stampaggio a iniezione. La soluzione è stata offerta dal processo di Additive Manufacturing.
Per molti anni, l’azienda ha utilizzato un sistema di prese in alluminio applicabile universalmente per produrre i propri contenitori per lo stoccaggio, la raccolta e il trasporto. Queste “mani metalliche” erano formate da profili in alluminio con alloggiamenti per ventose. Questo meccanismo veniva regolato per mezzo di viti esagonali, di continuo, a seconda del tipo di contenitore prodotto. Il fattore decisivo in questo caso è la precisione: le ventose devono essere esattamente nella giusta posizione affinché i contenitori possano essere rimossi dalla macchina di stampaggio a iniezione in modo semplice e veloce durante il ciclo di produzione. In caso contrario, il contenitore potrebbe inclinarsi, cosa che potrebbe comportare un arresto della produzione.
Anche senza che si verifichi questa situazione, che rappresenta il “caso peggiore”, i costi ricorrenti per il riattrezzamento sono significativi: “A causa della vasta gamma di prodotti che realizziamo, dobbiamo cambiare la configurazione su una delle nostre numerose macchine di stampaggio a iniezione circa tre volte al giorno”, spiega Michael Zander, Head of Plastics Production di Neunkirchen/Siegerland (Germania). Finora erano necessari circa dieci minuti solo per queste conversioni, a cui si aggiungevano le corrispondenti perdite di ricavi per via dei tempi di inattività delle macchine e della produzione. Con una soluzione migliore, sarebbe stato possibile ridurre i costi non solo indirettamente ma anche direttamente, di fatto con una drastica riduzione dei tempi di configurazione e dei tempi di fermo delle macchine di stampaggio a iniezione.
Con il supporto dei consulenti tecnici di EOS Additive Minds, il team di SSI Schäfer è stato in grado di acquisire competenze in un breve periodo di tempo e ha identificato specificamente questo potenziale di miglioramento: la pinza in alluminio, soggetta a errori, doveva essere sostituita da diverse pinze dedicate, ognuna delle quali adattata individualmente alle dimensioni e alle forme dei rispettivi contenitori. Queste pinze dovevano essere durevoli, veloci da sostituire e adattate in modo ottimale ai requisiti corrispondenti.
La progettazione delle pinze adatte era relativamente semplice, in quanto tutti i dati sui contenitori erano disponibili internamente. Era anche importante lasciarsi alle spalle vecchi percorsi progettuali e sfruttare al meglio le particolari capacità della stampa 3D: l’integrazione nella pinza dei condotti dell’aria, che a propria volta costituiscono la base per il meccanismo di presa pneumatica per l’estrazione dei contenitori, è una delle specialità dell’Additive Manufacturing. Era inoltre necessario progettare i componenti in modo tale da armonizzare stabilità e funzionalità, a causa delle dimensioni compatte e del peso contenuto della pinza.
Grazie al suo profilo con proprietà bilanciate, il materiale PA 2200 selezionato per questo scopo ha dimostrato le proprie caratteristiche in migliaia di applicazioni: solido, rigido, resistente alle sostanze chimiche e durevole. Inoltre, consente un elevato livello di dettaglio e opzioni complete di post-elaborazione: in breve, è ideale per componenti funzionali e connessioni mobili. Le pinze sono state prodotte tramite un sistema EOS P 396.
In questo modo, SSI Schäfer è stata in grado di progettare e costruire una moltitudine di pinze in pochi giorni. L’azienda ha inoltre ridotto drasticamente i tempi di riattrezzamento: bastano pochi clic per ottenere una pinza perfettamente abbinata al particolare contenitore. Questo approccio ha ridotto i tempi di configurazione dell’80% e ha permesso di guadagnare circa 120 ore di tempo di produzione all’anno.
Con la messa a punto manuale delle pinze precedenti, il pericolo di errori operativi era sempre presente in background. Riprogettando le pinze, questo è praticamente impossibile: le ventose ora sono sempre nella posizione corretta. Le nuove pinze hanno anche un peso inferiore di oltre la metà rispetto a quelle precedenti grazie al materiale con cui sono realizzate. Questa riduzione di peso superiore al 70% e la maggiore facilità d’uso per l’utente sono interessanti anche per il personale che effettua le conversioni.
Contenuti correlati
-
Additive manufacturing R-evolution al via con Energy Group e Stratasys
Il mondo dello sport può trarre grandi benefici dall’additive manufacturing: prototipazione, customizzazione, soluzioni per l’agonismo, produzione di singole parti funzionali e persino di interi lotti. Come? Affidandosi alla giusta tecnologia ma anche ai materiali più adatti ad...
-
Madeinadd assume entro il 2025: 10 posizione aperte
Madeinadd, tech company nata come progetto di sistema per supportare l’industria manifatturiera nella transizione verso la produzione additiva nell’ambito dell’importante attività del Fondo Boost Innovation, il corporate venture builder di CDP Venture Capital Sgr per la nascita...
-
L’uso del PA12 colorato nella manifattura industriale: una soluzione innovativa
In ambito industriale, l’identificazione rapida e precisa delle componenti è fondamentale per garantire sicurezza ed efficienza operativa. Un esempio emblematico è rappresentato dal tappo dell’olio motore, comunemente di colore giallo. Questa scelta cromatica permette agli operatori di...
-
L’additive manufacturing in ortopedia
In quale modo le aziende utilizzano l’AM per progettare e produrre dispositivi medici personalizzati? Se all’interno di molti settori industriali l’additive manufacturing (AM), ovvero produzione additiva, è stata tipicamente adottata per usi ‘tradizionali’, quali la prototipazione oppure...
-
AI, IoT e tomografia per rilevare i difetti nel progetto Reply e TEC Eurolab
Un software intelligente in grado di riconoscere in autonomia i difetti di un qualsiasi componente industriale. È questa l’idea alla base di 3DAIQ, un progetto di ricerca sperimentale cofinanziato nell’ambito del Bando IRISS promosso da SMACT Competence...
-
34.BI-MU, evento di inaugurazione mercoledì 9 ottobre in Fieramilano Rho
Dal 9 al 12 ottobre 2024, torna a fieramilano Rho, BI-MU, biennale della macchina utensile, robotica e automazione promossa da Ucimu – Sistemi per Produrre. L’evento di inaugurazione si terrà nello spazio Arena BI-MUpiù, Padiglione 11 –...
-
Design sostenibile e AM con LATI, eXgineering e il CSIA di Lugano
Un progetto formativo nel campo della produzione e del design di prodotto e di interni che si concentra sull’applicazione delle nuove tecnologie, sulla sostenibilità e sul concetto di economia circolare. Questa è l’essenza dell’iniziativa avviata dal CSIA, Centro...
-
Sensoristica avanzata e visione nella robotica con wenglor in 34.BI-MU
La filiale italiana di wenglor sensoric sarà tra i protagonisti della 34.BI-MU, la principale manifestazione italiana dedicata all’industria delle macchine utensili in programma dal 9 al 12 ottobre 2024 a FieraMilano Rho (Padiglione 13, stand B16), dove...
-
Quando la produzione è additiva
Negli ultimi tre decenni l’Additive Manufacturing ha visto una crescita notevole, trasformandosi in una realtà industriale pienamente consolidata e matura. Le applicazioni non si limitano alle attività di prototipazione ma si estendono alla produzione di utensili e...
-
Stampa 3D e lavorazioni CNC, binomio vincente SolidCAM e Desktop Metal
In occasione dell’evento ‘Innovazione in officina: dall’idea al prodotto con SolidCAM e Desktop Metal‘ è stato possibile toccare con mano i vantaggi offerti dalle più evolute tecnologie per la stampa 3D in metallo, supportate nella finitura CNC...