I ricercatori dell’Istituto Fraunhofer per l’Ottica Applicata e l’Ingegneria di Precisione di Jena hanno sviluppato un sistema di telecamere per il rilevamento tridimensionale di oggetti utilizzando due telecamere monocromatiche ad alta velocità e alta risoluzione e un proiettore Gobo (GOes Before Optics). Le variazioni di temperatura svolgono un ruolo importante nelle tipiche applicazioni dinamiche, come i crash test o l’attivazione dell’airbag, in aggiunta ai processi spaziali veloci. Il team di ricerca di Jena ha recentemente aggiornato il sistema con una termocamera raffreddata ad alte prestazioni di Teledyne Flir come parte di un progetto di misurazione congiunto, con l’obiettivo di creare un vero sistema di imaging termico 3D che ha la capacità di registrare fino ad una velocità di 1000 fotogrammi al secondo.
Il Fraunhofer Iof conduce ricerche orientate alle applicazioni nel campo della fotonica e sviluppa sistemi ottici innovativi per il controllo della luce, dalla generazione e manipolazione, alle applicazioni. La gamma di servizi dell’istituto copre l’intera catena del processo fotonico, dalla progettazione di sistemi opto-meccanici e opto-elettronici alla produzione di soluzioni e prototipi specifici per il cliente. Dal 2019 il programma include anche un sistema di termografia 3D ad alta velocità con una termocamera scientifica di Teledyne Flir.
Il team Iof ha sviluppato un sistema di telecamere 3D ad alta velocità nel 2016. Tale sistema è costituito da due telecamere in bianco e nero ad alta velocità in disposizione stereo e un proiettore Gobo sviluppato autonomamente per l’illuminazione attiva. Di recente i ricercatori hanno aggiunto al sistema anche una termocamera. In particolare utilizzano il modello Flir X6901sc SLS LWIR. Si tratta di una termocamera a infrarossi veloce e altamente sensibile, che grazie alle sue avanzate funzioni di sincronizzazione e alla capacità di registrazione nella Ram interna con hard disk SSD aggiuntivo, offre tutto il necessario per acquisire immagini stop-motion di prima classe di eventi ad alta velocità, sia in laboratorio sia sui siti di prova. X6901sc SLS-LWIR offre una velocità di registrazione fino a 1.004 fotogrammi al secondo nel formato completo di 640×512 pixel e fino a circa 29 kHz nel formato di immagine parziale più piccolo. I dati possono essere registrati in formato full frame per un massimo di 26 secondi senza alcuna perdita di immagine nella Ram interna di queste termocamere. Flir X6901sc SLS con il suo sensore LWIR Strained Layer Superlattice (SLS) consente di ottenere tempi di integrazione che sono circa 12 volte più brevi e hanno una gamma dinamica più ampia rispetto ad altri modelli X6900s.
L’obiettivo del sistema è combinare dati spaziali 3D altamente dinamici e dati termici. Processi estremamente veloci come un atleta in movimento, un crash test o l’attivazione di un airbag non solo mostrano rapidi cambiamenti nella forma della superficie, ma anche nella temperatura locale. In passato non era possibile catturare contemporaneamente tali cambiamenti. Per la prima volta si è ottenuto tutto questo grazie al nuovo sistema di misurazione termografica 3D ad alta velocità del Fraunhofer Iof.
Il sistema si basa su due telecamere monocromatiche sensibili nello spettro del visibile (Vis). Operano a frame rate superiori a 12.000 Hz e a una risoluzione di un megapixel – sebbene sia possibile avere frame rate più elevati a una risoluzione inferiore. Tuttavia, le due fotocamere non sono ancora in grado di produrre dati 3D significativi nella qualità desiderata. Inoltre, è richiesto un sofisticato sistema di illuminazione che proietti una sequenza ultraveloce di motivi a strisce. Questi modelli sono simili alle convenzionali strisce sinusoidali, ma le larghezze di tali strisce variano in modo aperiodico.
Per ottenere l’effetto desiderato, una lastra di vetro è stata verniciata a vapore con strisce metalliche di cromo. Questa lastra ruota quindi in un proiettore posto di fronte all’unità ottica, fornendo quindi il motivo a strisce necessario per l’assegnazione specifica dei pixel di entrambe le fotocamere. Tale principio viene chiamato proiezione Gobo.
Il sistema di termocamere Flir X6901sc SLS LWIR del Fraunhofer IOF produce immagini termiche a 1000 Hz. I dati termici vengono combinati con i dati 3D di due telecamere in bianco e nero ad alta velocità. I ricercatori utilizzano il sistema proprietario Gobo per la proiezione necessaria di modelli a strisce aperiodiche. Le informazioni 3D vengono registrate dalle telecamere monocromatiche utilizzando le proiezioni a strisce del proiettore Gobo. I dati a infrarossi 2D della termocamera LWIR possono quindi essere uniti ai dati 3D per formare un’immagine termica 3D in un successivo passaggio, grazie alla calibrazione di tutte e 3 le telecamere. La combinazione dei dati 3D ricostruiti con i dati 2D della termocamera Flir X6901sc SLS ad alta velocità produce, in breve, immagini termiche tridimensionali ad alta velocità. Flir X6901sc SLS opera nella gamma dell’infrarosso a onda lunga, quindi non è sensibile alla gamma di lunghezze d’onda del visibile e del vicino infrarosso, in cui la lampada del proiettore Gobo emette radiazioni. Poiché anche il riscaldamento dell’oggetto da parte dei modelli sinusoidali aperiodici proiettati è insignificante, il proiettore Gobo non ha alcuna influenza sull’immagine termica.
Tutte e tre le telecamere registrano i dati dell’immagine contemporaneamente durante la misurazione. I dati delle telecamere in bianco e nero, combinati con la proiezione a strisce aperiodiche del proiettore Gobo, producono l’immagine 3D vera e propria, per la quale vengono normalmente calcolate sequenze di 10 coppie di immagini per formare un’immagine 3D. Questa “ricostruzione 3D” si traduce in una forma spaziale, sulla quale vengono sovrapposti i dati dell’immagine termica della termocamera Flir LWIR per assegnare i valori di temperatura alle coordinate spaziali in un processo di mappatura.
Il sistema composto da telecamere Vis e termocamera LWIR deve essere calibrato prima della misurazione. A tal fine il team Iof utilizza una tavola di calibrazione con una griglia regolare di cerchi aperti e pieni. Per garantire che queste strutture possano essere rilevate sia nel Vis che nel LWIR, anche con una distribuzione omogenea della temperatura, sono stati selezionati materiali con gradi di riflessione (Vis) ed emissività (LWIR) molto diversi per i cerchi e lo sfondo. I ricercatori di Jena hanno trovato una soluzione al problema utilizzando circuiti stampati. In tal modo hanno sviluppato un circuito stampato piuttosto insolito costituito da una griglia regolare di cerchi aperti e pieni invece di connessioni elettriche tra i componenti elettrici.
Il sistema è stato testato in vari scenari: un giocatore di basket che dribblava una palla (che non solo deforma la palla, ma provoca anche un riscaldamento termico). Un’altra possibile applicazione è la misurazione dell’andamento della temperatura e la rappresentazione spaziale in caso di attivazione di un airbag: il sistema ha registrato il processo ad alta velocità da una distanza di 3 m per mezzo secondo. Combinando i dati tridimensionali con le informazioni delle immagini termiche è risultato chiaro non solo quanto l’airbag fosse diventato caldo a seguito dell’apertura, ma anche in quale momento e con quali coordinate spaziali esatte. Tali informazioni possono aiutare a ridurre e prevenire il rischio di lesioni ai conducenti legate all’attivazione dell’airbag.